
HP Knowledge Mine Document 200000010745233 Page 1 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

RN110007B
HP-UX 11.0 Release Notes, Networking, Part 2 of 2
Document Information Table

HP-UX 11.0 Release Notes, Networking, Part 2 of 2 Parts
CHAPTER 7: Networking

TCP/IP
@@
For 10.30:

The TCP/IP stack is streams-based in 10.30. Some of the pre-10.30 BSD
kernel data structures may no longer exist.

The following lists the new features for 10.30. These features are
described in detail in this section.

 * /etc/rc.config.d/netconf changes.
 * Logical interfaces allow multiple IP addresses per card.
 * IP/IEEE802.3 requires SNAP encapsulation and a separate logical
 interface.
 * ndd utility for examining and modifying system-wide transport
 parameters.
 * New PPP software replaces PPL to provide both PPP and SLIP
 connections.

Obsolete Features
**

 * lanconfig (functionality included in ifconfig/lanadmin).
 * ifalias (functionality included in ifconfig).
 * nettune (functionality included in ndd).
 * ppl (replaced by pppd).

Changes to /etc/rc.config.d/netconf
**

The 10.30 installation script will modify any existing
/etc/rc.config.d/netconf file to match the new file syntax. In most
configurations, no further changes are necessary. However, systems that
use IP over IEEE802.3 must change their IP configuration. Refer to the
sections "Logical Interfaces: IP/Ethernet vs. IP/IEEE802.3" and
"Configuring SNAP/IEEE802.3 Interfaces" for more information.

LANCONFIG_ARGS
--
Statements for LANCONFIG_ARGS are no longer supported.
Any LANCONFIG_ARGS statements are ignored.

INTERFACE_NAME
--
The interface name syntax for INTERFACE_NAME statements has been
expanded to allow "logical interface" names. Logical interfaces and
interface names are explained in the sections below.

New Statements: INTERFACE_STATE, DHCP_ENABLE
--
There are two new statements: INTERFACE_STATE and DHCP_ENABLE.

INTERFACE_STATE determines the logical interface state ("up", "down", or
blank) at system boot time. If nothing is specified, the state
defaults to "up".

HP Knowledge Mine Document 200000010745233 Page 2 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

DHCP_ENABLE determines if the system is a Dynamic Host Configuration
Protocol (DHCP) client and if the IP parameters (IP address, subnet
mask, and so on) will be set using DHCP. The default is 0 (the system
is not a DHCP client). The DHCP_ENABLE statement was added at 10.20.

Logical Interfaces: IP Multiplexing
**

Logical interfaces let you multiplex IP addresses over a physical
interface (IP multiplexing). With IP multiplexing, you configure
multiple IP addresses for a single physical interface.

IP multiplexing allows a single system to be seen as multiple systems
with multiple IP addresses and host names, even if the system has only
one physical interface card. This functionality allows multiple
instances of applications to appear as if they reside on separate
machines. For example, an Internet Services Provider (ISP) may provide
websites for the Acme, Bob, and Cody companies. Using IP multiplexing,
a single system with one physical interface can appear to have three IP
addresses, each home to a different website. From the outside world, it
would appear as if the Acme, Bob, and Cody companies have websites on
different machines.

 +---+
 | www.acme.com www.bob.com www.cody.com |
 | \ | / |
 | +------------+------------+-----------+ |
 | | | | | |
 | | 16.1.1.1 | 16.2.2.2 | 17.1.1.1 | |
 | | | | | |
 +----+------------+------------+-----------+------+
 |
 |
 Z-----------------------------+----------------------------------Z

Note that the IP addresses assigned to a card may be on the same subnet
or on different subnets. In this example, two of the IP addresses for
the card are part of the same network (16.1.1.1 and 16.2.2.2) and the
third address is from a different network (17.1.1.1).

There are no performance advantages or disadvantages. All transport
resources (buffers) are pooled and used by all logical interfaces with
no partitioning for the individual interfaces.

To use IP multiplexing with routers, the router devices must be able to
map multiple IP addresses to the same MAC address. Some vendors call
this functionality "multinetting" or "secondary subnets" and may limit
the maximum number of IP addresses mapped to the same MAC address. For
example, the HP 650 router supports a maximum of 16 IP addresses mapped
to the same MAC address.

Logical Interfaces: IP/Ethernet vs. IP/IEEE802.3
**

Logical interfaces are also used when an interface card is used for both
IP/Ethernet and IP/IEEE802.3 packets. At HP-UX 10.30, sending IP
packets using ethernet and sending IP packets using IEEE802.3 requires
two separate logical interfaces of the transport. To send IP packets
using ethernet and IEEE 802.3, you must configure two logical interfaces
with two different IP addresses. In addition, the IP addresses must be
in two different subnets. (In prior releases, IP packets could be sent
over ethernet or IEEE 802.3 simultaneously using the same IP address.)
Refer to the section "Interface Names" and "Configuring SNAP/IEEE802.3
Interfaces" for more information on configuring logical interfaces for
IP/IEEE802.3.

In addition, at 10.30, all IP packets sent over IEEE802.3 must use

HP Knowledge Mine Document 200000010745233 Page 3 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

Sub-Network Access Protocol (SNAP) encapsulation. In SNAP, the
IEEE802.3 DSAP and SSAP fields are both hexadecimal AA. The 802.3
control field is 3 (unnumbered information or data). Following this is
the SNAP header: an organization code and type field. The organization
code is 24-bits and assigned by IEEE, and is typically 0x000000. The
16-bit type field is used to carry an ethernet type value. For example,
the type value for IP is 0x0800, as shown below.

 +---
 |dest MAC | src MAC | DSAP | SSAP | ctl | organize | type | data ...
 | | | AA | AA | 03 | 00 00 00 | 08 00 | IP hdr
 +---

IEEE802.3 and DTCs, JetDirect, MPE-XL
--
DTCs and JetDirect cards communicate with IEEE802.3 link-level (DLPI)
applications on HP-UX hosts. These applications run directly over the
IEEE802.3 protocol (IP is not used) and do not require a SNAP/IEEE802.3
logical interface. SNAP/IEEE802.3 logical interfaces are only required
for IP packets sent over IEEE802.3.

All supported MPE-XL systems (version 4.0 and later) support ethernet.

Interface Names
**

Interface names used for ifconfig commands and /etc/rc.config.d/netconf
statements can have a logical instance number appended to the card name
(for example, lan0:1). The new syntax is:

nameX[:logical_instance]

Where:
name is the class of interface, such as lan (Ethernet LAN, token ring,
FDDI, or Fibre Channel links), snap (IEEE802.3 with SNAP encapsulation),
atm (ATM), du (Dial-up), ixe (X.25), and mfe (Frame Relay).

X is the Physical Point of Attachment (PPA). This is a numerical index
for the physical card in its class. For LAN devices, the lanscan
command will display the name and PPA number concatenated (such as lan0)
in the Net-Interface NamePPA column.

logical_instance is an index corresponding to the logical interface for
the specified card. The default is 0. The interface name lan0 is
equivalent to lan0:0.

The first logical instance (logical instance 0) for a card type and card
instance (lan0:0, lan1:0, snap0:0) is known as the initial interface.
The initial interface for a card/encapsulation type must be configured
before subsequent logical interfaces. For example, you must configure
lan2:0 (or lan2) before configuring lan2:1. Once you have configured
the initial interface, you can configure the subsequent logical
interfaces in any order.

Configuring Multiplexed IP Addresses
**

In this example, the system has two physical interfaces and three
logical interfaces.

 +---+
 | 44.1 48.1 |
 | +------------+------------+ +-----------+ |
	16.1.1.1	16.2.2.2		18.1.1.1	
	lan0:0	lan0:1		lan1:0	
 +----+------------+------------+-----+-----------+----+

HP Knowledge Mine Document 200000010745233 Page 4 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

 | |
 | |
 | Z------------+----------Z
 Z-----------+--------------Z

lanscan Output:

Hardware Station Crd Hdw Net-Interface NM MAC HP-DLPI DLPI
Path Address In# State NamePPA ID Type Support Mjr#
44.1 0x080009267C14 0 UP lan0 snap0 1 ETHER Yes 119
48.1 0x080009260C85 1 UP lan1 snap1 2 ETHER Yes 119

Config Statements:

 ifconfig lan0:0 inet 16.1.1.1
 ifconfig lan0:1 inet 16.2.2.2
 ifconfig lan1:0 inet 18.1.1.1

/etc/rc.config.d/netconf Statements:

 INTERFACE_NAME[0]=lan0
 IP_ADDRESS[0]=16.1.1.1
 SUBNET_MASK[0]=255.0.0.0
 BROADCAST_ADDRESS[0]=""
 INTERFACE_STATE[0]=up
 DHCP_ENABLE[0]=0

 INTERFACE_NAME[1]=lan0:1
 IP_ADDRESS[1]=16.2.2.2
 SUBNET_MASK[1]=255.0.0.0
 BROADCAST_ADDRESS[1]=""
 INTERFACE_STATE[1]=up
 DHCP_ENABLE[1]=0

 INTERFACE_NAME[2]=lan1
 IP_ADDRESS[2]=18.1.1.1
 SUBNET_MASK[2]=255.0.0.0
 BROADCAST_ADDRESS[2]=""
 INTERFACE_STATE[2]=up
 DHCP_ENABLE[2]=0

Configuring SNAP/IEEE802.3 Interfaces
**

In this example, the system has one physical interfaces and two logical
interfaces. One logical interface is used for SNAP/IEEE802.3.

 +------------------------------------+
 | +------------+------------+ |
 | | | | |
 | | 16.1.1.1 | 17.1.1.1 | |
 | | lan0:0 | snap0:0 | |
 +----+------------+------------+-----+
 (ethernet) | (SNAP/IEEE802.3)
 |
 Z---------------------+------------------------Z

ifconfig Statements:

 ifconfig lan0:0 inet 16.1.1.1
 ifconfig snap0:0 inet 17.1.1.1

/etc/rc.config.d/netconf Statements:

 INTERFACE_NAME[0]=lan0:0
 IP_ADDRESS[0]=16.1.1.1
 SUBNET_MASK[0]=255.0.0.0

HP Knowledge Mine Document 200000010745233 Page 5 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

 BROADCAST_ADDRESS[0]=""
 INTERFACE_STATE[0]=up
 DHCP_ENABLE[0]=0

 INTERFACE_NAME[1]=snap0:0
 IP_ADDRESS[1]=17.1.1.1
 SUBNET_MASK[1]=255.0.0.0
 BROADCAST_ADDRESS[1]=""
 INTERFACE_STATE[1]=up
 DHCP_ENABLE[1]=0

Note that the IP address for snap0:0 cannot be in the same subnet as the
IP address for lan0:0. Also note that the logical instance number for
the snap logical interface (snap0:0) is 0, not 1. Logical instance
numbers are sequenced from 0 for each interface name.

lanconfig
**

 * The lanconfig command and its ieee flag have been obsoleted.

 * The ether and snap802.3 options of the lanconfig command have
 been integrated into the ifconfig command.

 * The LANCONFIG_ARGS variable in /etc/rc.config.d/netconf is
 ignored.

 * The Token Ring rif option (source routing) is now part of
 the lanadmin command. To disable source routing:

 /usr/sbin/lanadmin -B off <PPA_number>

 To enable:

 /usr/sbin/lanadmin -B on <PPA_number>

 To display the current setting:

 /usr/sbin/lanadmin -b <PPA_number>

 By default, source routing is enabled on HP Token Ring devices.
 Use the lanscan command to determine the PPA numbers for
 LAN devices.

ifalias
**

The ifalias command that used to be in /usr/contrib/bin/ is obsolete.
Its functionality has been integrated into the ifconfig command (IP
multiplexing/logical interfaces).

netstat Command
**

The netstat "-r" option "Use" column no longer reflects the number of
packets transmitted using a particular route. Generally, packet
counts are not recorded for each route. However, if a local
application sends packets to a local IP address, that number of
packets will be reflected in the local host route.

Users can use the lanadmin command to determine the number of packets
transmitted from a specific network interface. However, this will not
distinguish one route from another.

NOTE: This behavior may be changed in a future patch or release without
notice.

HP Knowledge Mine Document 200000010745233 Page 6 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

netstat
**

The following netstat options are no longer supported:

-p arp
-p probe
-A
-rs
-t
-m

With the support of multiple logical interfaces, the netstat -i command
displays all IP interfaces (logical interfaces) configured through
ifconfig or the /etc/rc.config.d/netconf file. There are four changes
in the netstat -i output:

* The "Name" field of netstat -i may include interface names
 corresponding to logical interfaces with the format lan0,
 lan0:1, lan0:2, and so on.

* The Ierrs, Oerrs, Collision counts have been removed in 10.30.
 The Errors/Collision information for each physical interface is
 available through the lanadmin command instead.

* The Ipkts and Opkts counts for each interface are for TCP/UDP/IP
 traffic only (such as IP packets).

* Physical interfaces that have not been configured using
 ifconfig will not be displayed by netstat. Use lanscan to
 display all physical interfaces on the system.

An example is shown below:

netstat -i

Name Mtu Network Address Ipkts Opkts
lo0 4136 127.0.0.0 localhost 206 206
lan0 1500 15.1.4.0 hpaa0 2986637 219346
lan1 1500 192.1.0.0 hpaa1 0 0
lan1:1 1500 202.1.0.0 hpaa2 0 0

Changes to netstat -r
--
 1. The PmtuTime field in the netstat -r output is no longer supported.

 2. The output will show a host route for each IP interface.
 These routes are automatically created when the interfaces
 are configured via the ifconfig command or through the
 /etc/rc.config.d/netconf file.

nettune and ndd
**

The supported utility /usr/bin/ndd lets administrators modify
system-wide transport parameters in the working kernel. The ndd utility
replaces the nettune command. Some of internal kernel variables from
releases prior to 10.30 may no longer exist (such as tcp_sendspace,
tcp_dont winscale, and so on). Therefore, adb scripts developed for
pre-10.30 releases may not work on 10.30 systems.

Administrators can use the file /etc/rc.config.d/nddconf to have ndd
modify network kernel parameters every time the system is booted.

SLIP and PPP
**

HP Knowledge Mine Document 200000010745233 Page 7 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

The ppl command for the SLIP protocol and its associated configuration
files is obsolete. Use the new pppd command to configure and administer
SLIP and PPP links. The configuration requirements for pppd are similar
to those used for ppl, but the configuration files have different names
and formats. Migrating existing SLIP links to PPP links is explained in
the manual Installing and Administering PPP (part number B2355-90137).

netman and ni Drivers
**

The netman and ni drivers are not supported in HP-UX 10.30. The device
files /dev/netman and /dev/ni are no longer available.

Copy-on-Write (COW)
**

Copy-on-write, one of the copy avoidance features, will no longer be
supported in HP-UX 10.30. Checksum-offload and page remapping are still
supported.

Loopback Interface (lo0)
**

Any attempt to change the address of primary loopback interface (lo0:0)
will fail. lo0:0 is automatically configured to 127.0.0.1. Any address
configured for the loopback logical interface (such as lo0:1) will be
treated as a loopback address.

IP Packets to Local Host Address
**

All IP packets destined for the local host address will be looped back
through the IP layer. These packets will not be sent to the drivers.

TCP Keepalive Packets
**

The algorithm of sending TCP keepalive packets has been changed.

The following kernel parameters affect TCP behavior for keepalive o
packets:

 tcp_keepalive_interval tcp_ip_abort_interval tcp_ip_abort_cinterval
 tcp_keepalive_detached_interval

The parameter tcp_keepalive_interval determines the amount of time that
TCP waits for an idle connection with no unacknowledged data before
sending keepalive packets. The default is 2 hours.

If the remote does not acknowledge the keepalive packet, TCP will use
one of the following retransmission timers and terminate the
connection when it elapses as follows:

State Timer Default
----- ----- -------
Established tcp_ip_abort_interval 600000 ms
connection (10 minutes)

Connection tcp_ip_abort_cinterval 240000 ms
establishment (4 minutes)

Connection tcp_keepalive_detached_interval 240000 ms
terminating (4 minutes)

The default values may change in future releases. For more information,
use the command:

HP Knowledge Mine Document 200000010745233 Page 8 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

 ndd -h <timer_name>

Refer to the tcp(7p) and getsockopt(2) manpages for more information.

Networking Memory for Fragment Reassembly
**

The configurable kernel parameter netmemmax is no longer supported.
There is an ndd tunable, ip_reass_mem_limit, that can be used to limit
the fragment reassembly memory at run time.

For more information, use the command:

 ndd -h ip_reass_mem_limit

Netisr Priority
**

The streams-based TCP/IP does not support the network interface daemon,
netisr. The kernel parameter netisr_priority does not exist in 10.30.

TCP Hash Table Size
**

The size of the hash table for TCP connections is determined by the
kernel parameter tcphashsz. This kernel parameter should only be
modified under the direction of Hewlett-Packard.

Interface information: ioctl SIOCGIFCONF/SIOCGIFNUM
**

The SIOCGIFCONF ioctl call will return all IP interfaces configured in
the system. The ifr_name field of the SIOCGIFCONF ioctl may contain
logical interface names. SIOCGIFCONF does not return information for
physical interfaces that have not been configured using ifconfig or
/etc/rc.config.d/netconf.

The new SIOCGIFNUM ioctl call will return the total number of IP
interfaces (initial and any subsequent interfaces) configured in the
system. This is useful for determining the size of the output buffer
needed by SIOCGIFCONF.

TCP Timers: setsockopt TCP_ABORT_THRESHOLD and TCP_CONN_ABORT_THRESHOLD
**

The TCP timers tcp_ip_abort_interval and tcp_ip_abort_cinterval can be
set for individual sockets using the setsockopt options
TCP_ABORT_THRESHOLD and TCP_CONN_ABORT_THRESHOLD.

Refer to the section "TCP Keepalive Timers" in this document and the
tcp(7p) and getsockopt(2) manpages for more information.

Transport-Independent RPC (TI-RPC)
@@
For 10.30:

The transport-independent RPC (TI-RPC) system provides a single,
consistent programming interface across machines and network transport
protocols. TI-RPC makes RPC applications transport-independent by
delaying the binding of the application to a specific transport until
the program is invoked.

TI-RPC replaces all the old RPC interface that reside in libc.2/a. All
TI-RPC APIs now reside in libnsl.

Previously, with transport-specific ONC RPC, this binding was done at

HP Knowledge Mine Document 200000010745233 Page 9 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

compile time, so the application could not take advantage of new
transports unless the program was rebuilt. With TI-RPC, new transports
can be used by the application if you update a network configuration
file (/dev/netconfig) and restart the program. /etc/netconfig is part
of the Network Selection library which facilitates run-time transport
selection.

New RPC programming interfaces are added to the RPC library to support
transport-independence. These new interfaces are Network Selection(NS)
and Name to Address Translation(N2A). NS facilitates run-time transport
selection and N2A provides universal addresses that are independent of
the chosen transport. The TI-RPC library includes the older interfaces
for backwards compatibility.

TI-RPC provides the following:

 * Supports Multiple Networking Transports:

 * Enhances the heterogeneity of distributed applications

 * Handles Differences in Networking Protocols:

 * Application development does not require low-level networking
 knowledge. Developers only specify procedures to be distributed.

 * Allows Runtime Transport-Independence:

 * Users can run the same binary version of an application on any
 supported protocols.

 * Developers need not produce a different version of their
 application for each network protocol.

 * Eases application migration to new networking technologies.

The following figure illustrates the new TI-RPC software structure:

Client or Server TI-RPC Application
 ^ ^ ^
 | | |
 | | | Transport independent Interface
 --------|-------|-------|-------------
TI-RPC v	v				
	Network			Name to	
	Selection			Address	
-----------		Translation			
^	---------------	--------------------------			
		^	<---	rpcbind binding service	

v v v					

	RPC Interface Library				

^					
 ----------------|---------------------
 v Transport Layer Interface

XTI/STREAM Interface
 ^
 |
 v Transport Provider Interface

 | Transport Pool (TCP,UDP,etc.) |

HP Knowledge Mine Document 200000010745233 Page 10 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

At the top is your application. The interface to the RPC library has
changed very little, except there are many new procedures. Typically,
you will only need to call the the topmost layer of the RPC Interface
Library. Very rarely will you need to use the Network Selection library
and almost never will you need to call the Name to Address Translation
modules.

Network Selection facilitates run-time transport selection. It provides
the means to choose the transport on which an application should run.
It is based upon two inputs, the netconfig database (/etc/netconfig) and
the optional environment variable NETPATH. The netconfig lists the
transports available on the host, including information about the
transport such as its type, device name, and name-to-address translation
module. Here are a few sample entries in the file:

/etc/netconfig:
#netid type flags family protocol device address
loadable module
udp tpi_clts v inet udp /dev/udp
 -
tcp tpi_cots_ord v inet tcp /dev/tcp
 -

Name-to-address translation provides universal addresses that are
independent of the chosen transport.

TI-RPC was produced without affecting the existing ONC RPC protocol,
which was always transport-independent. Because of that, ONC RPC
applications can be run as is and even recompiled under TI-RPC.
Applications that do not make any explicit socket system calls are
source compatible with the new implementation. Applications that make
socket system calls require minor changes.

Impact

Any applications that explicitly make socket system calls must now use
its equivalent XTI calls.

X/Open Sockets: socklen_t
@@@

The data type of some parameters and struct members is changed from
size_t to socket_t.

Ostensibly, this change affects only applications compiled with the
option -D_XOPEN_EXTENDED_SOURCE.

However, because socklen_t and size_t have the same underlying type,
the change has no immediate consequences.

The data type of the following parameters and struct members has been
changed from size_t to socket_t defined in <sys/socket.h>:

 int accept(..., socklen_t *addrlen);
 int bind(..., socklen_t addrlen);
 int connect(..., socklen_t addrlen);
 int getpeername(..., socklen_t *addrlen);
 int getsockname(..., socklen_t *addrlen);
 int getsockopt(..., socklen_t *optlen);
 ssize_t recvfrom(..., socklen_t *fromlen);
 ssize_t sendto(..., socklen_t tolen);
 int setsockopt(..., socklen_t optlen);

HP Knowledge Mine Document 200000010745233 Page 11 of 11

http://hpber022.swiss.hp.com/cgi-bin/kmine/B.00.00/explorer/return_doc..../document.htm 29.09.99

 struct cmsghdr {
 socklen_t cmsg_len;

 };

 struct msghdr {

 socklen_t msg_namelen;

 socklen_t msg_controllen;

 };

The use of size_t is deprecated for these objects.

Currently, the socklen_t and size_t types are the same underlying type.
This is compatible with both the UNIX 95 and UNIX 98 profiles.

However, in a future release, socklen_t might be a different size.
In that case, passing a size_t pointer will evoke compile-time warnings,
which must be corrected in order for the application to behave correctly.

Applications that use socklen_t will avoid such migration problems.
For portability to the UNIX 95 profile, applications should
follow the X/Open specification (see xopen_networking(7)).

